JOM 23842

Acetylenkomplexe des Wolframs. M01ekiilstrukturen von (r/5-C5H 4CMe2C13H9)W(CO)(HC2Ph) Me, (r/5" '1-1-CsH4CMe2ClaH8)W(CO)(C2Ph2) und (r/5-C5Hs)Cr(CO)(C2H2)NO; ein Vergleich von alkinischen Vier- und Zweielektronenliganden

Helmut G. Alt, Jung Su Han

Laboratorium fiir Anorganische Chemie der Unicersitiit Bayreuth, Postfach 10 12 51, D-95440 Bayreuth (Deutschland)

Robin D. Rogers

Department of Chemistry, Northern Illinois University, DeKalb, IL 60115 (USA)

Ulf Thewalt

Sektion fiir RiJntgen- und Elektronenbeugung der Universitiit Ulm, Albert Einstein-Allee 11, D-89069 Ulm (Deutschland)

(Eingegangen den 1. April 1993)

Abstract

The photo-induced reaction of the functionalized cyclopentadienyl complexes (*/5-CsH4CMe2R)W(CO)3Me (R = indenyl, C9H7; fluorenyl, C13H9) with alkynes C2R'2 (R'= H, Ph) in solution yields the products (*/5-CsH4CMe2R)W(CO)(C2R'2)Me and (*/5:*/LCsH4CMe2C13Ha)-W(CO)(C2R'2). In these complexes the alkyne acts as a four electron ligand. A comparison of the molecular structures of (*/5-CsH4CMe2C13H9)W(CO)(HC2Ph)Me and (*/5:*/LC5H4CMe2Ct3Ha)W(COXCzPh2) with (*/5. C5HsCr(CO)(C2H2)(NO) indicates that the different metai-alkyne bond distances are good criterea whether the aikyne ligand acts as four or two electron ligand.

Zusammenfassung

Die photoinduzierte Umsetzung der funktionalisierten Cyclopentadienylkomplexe (*/5-CsH4CMe2R)W(CO)3Me (R = Indenyl, C9H7; Fluorenyl, CI3H9) mit Alkinen C2R'2 (R' = H, Ph) in L6sung f'tihrt zu den Produkten (*/5-CsH4CMe2R)W(CO)(C2R'2)Me und (*/5:*/l_C5H4CMe2C13Hs)W(COXC2R,2)" In diesen Komplexen fungiert das Alkin als Vierelektronenligand. Ein Vergleich der Molekiilstrukturen von (*/5-C5H4CMe2Cz3H9)W(COXHC2Ph)Me und (,/5:*/LC5H4CMe2ClaHs)W(COXC2Ph2) mit der von (*/5-CsHs)Cr(CO)(C2H2)(NO) 1~il3tam Metall-Alkin-Bindungsabstand erkennen, ob das Alkin als Vier- oder Zweielektronenligand vorliegt.

1. Einleitung

Llbergangsmetallkomplexe mit Alkinen als Vierelektronenliganden sind nicht nur von bindungstheoretischem Interesse, sondern bieten auch ein vielseitiges Synthesepotential (vgl. [1,2]). Wir haben kiirzlich iJber die Darstellung neuer Alkinkomplexe des Molybd~ins und Wolframs berichtet, die als Besonderheit einen funktionalisierten Cyclopentadienylliganden aufweisen [3]. In dieser Arbeit stellen wir die Synthese der Acetylenkomplexe (r/5-C 5H 4-CMe 2C 9H 7)W(CO)-(C2H2)Me und (r/5 : r/1-CsH4CMe2ClaH8)W(CO)-(C2Ph 2) sowie die Molekiilstrukturen von ('r/5-CsH4-CMe2-ClaH9)W(COXHC2Ph)Me und (-05: r/LCsH4-

Correspondence to: Prof. Dr. H.G. Alt.

^{*} Herrn Prof. Dr. h.c. mult. E.O. Fischer zum 75. Geburtstag gewidmet~.

Komplex	IR ^a	¹ H-NMR ^b					MS °	Ausb.	Fp.
	,(CO)	ð(C ₅ H ₄)	ð(CMe ₂)	δ(W-CH ₃) [² J(WH) in Hz]	ð(Alkin)	δ(C ₉ H ₇) bzw. δ(C ₁₃ H ₉) [J(HH) in Hz]		(%)	(<u>)</u>
la	1909	5.60 (m, 1), 5.36 (m, 1) 5.21 (m, 1), 5.02 (m, 1)	1.17 (s, 3) 1.10 (s, 3)	-0.14 [7.9]	12.45 (d, 1) 11.70 (d, 1) [1.4]	7.25 (m, 3), 7.09 (m, 1) 6.80 (dd, 1) [5.7/1.9] 6.49 (dd, 1) [5.7/1.9] 3.49 (vr, 1) [1.9]			
£	1909	5.57 (m, 1), 5.45 (m, 1) 5.25 (m, 1), 5.05 (m, 1)	1.24 (s, 3) 1.00 (s, 3)	- 0.15 [8.0]	12.46 (d, 1) 11.72 (d, 1) [1.4]	7.25 (m, 3), 2.09 (m, 1) 6.80 (dd, 1) [5.7/1.9] 6.44 (dd, 1) [7.5/1.9] 3.47 (vr, 1) [1.9]	474	11	55
lc	1909	5.55 (m, 2), 5.52 (m, 2)	1.68 (s, 3) 1.45 (s, 3)	- 0.11 [8.0]	12.48 (d, 1) 11.74 (d, 1) [1.4]	7.53 (d, 1) [7.7], 7.46 (d, 1) [7.3], 7.32 (m, 1), 7.09 (m, 1) 6.22 (vt, 1) [2.1], 3.31 (d, 2) [2.1])		Ś	
8	1931	6.58 (m, 1), 5.86 (m, 1) 5.17 (m, 1), 5.02 (m, 1)	1.86 (s, 3) 0.41 (s, 3)	ı	7.53 (m, 10)	7.55 (m, 3), 7.34 (vt, 1) [7.2] 7.24 (vt, 1) [7.5], 7.04 (dd, 1) [7.2] 6.50 (t, 1) [7.5], 6.50 (t, 1) [7.5] 6.30 (dd, 1) [7.5/1.1]		64	147
^a cm ⁻¹ , in T s = Singulett,	oluol. ^b In N , d = Dublett	Methylenchlorid- d_2 , bei 20°C t, m = Multiplett, vt = virtue	, rel. Restproto elles Triplett, dd	nensignal ($\delta = 5.32$ pl I = Doppeldublett.	pm). ^c Molmassenspe:	ak m/e . ^d ΔG^{\ddagger} (für Alkinrotation) =	= 80.8 (±0.3)	[kJ/mol].	

c pun 1. do- V TABELLE 1 Charakterisia

210

H.G. Alt et al. / Acetylenkomplexe des Wolframs

 $CMe_2C_{13}H_8$)W(CO)($C_{13}H_8$) vor, in denen das Alkin formal als Vierelektronenligand vorliegt. Diese Strukturen werden mit der des Komplexes (η^5 -C₅H₅Cr-(CO)(C₂H₂)(NO) verglichen, in dem das Alkin als Zweielektronenligand fungiert.

2. Ergebnisse und Diskussion

2.1. Darstellung der Komplexe $(\eta^5 - C_5 H_4 CMe_2 C_9 H_7)W_{-}(CO)(C_2 H_2)Me$ (1) und $(\eta^5: \eta^1 - C_5 H_4 CMe_2 C_{13} H_8)W_{-}(CO)(C_2 Ph_2)$ (2)

Das Syntheseprinzip für Komplexe vom Typ 1 und 2 haben wir bereits früher beschrieben [3]. Bei der photoinduzierten Umsetzung von $(\eta^5-C_5H_4CMe_2R)W$ -(CO)₃Me mit dem entsprechenden Acetylen entstehen die Produkte 1 und 2 (vgl. [4]). Der Komplex 1 konnte in drei isomeren Formen erhalten werden: Liegt das Brückenkopf-Kohlenstoffatom des Indenylsubstituenten sp³-hybridisiert vor, dann gibt dies Anlaß für eine exo- bzw. endo-Form (1a, 1b); im Fall einer sp²-Hybridisierung (Verschiebung der Doppelbindung im Indenylfünfring) resultiert nur ein Isomeres (1c).

2.2. Spektroskopische Charakterisierung von 1a-c und 2

Die IR-, ¹H-NMR und ¹³C-NMR-Spektren von **1a-c** und **2** belegen eindeutig die vorgeschlagenen Strukturen, weil in den asymmetrischen Molekülen jedes H-Atom bzw. C-Atom in den NMR-Spektren charakteristische Signale bzw. Kopplungsmuster liefert (vgl. Tab. 1 und 2). Auf eine eingehende Spektreninterpretation wird hier verzichtet und auf [3] verwiesen.

2.3. Festkörperstrukturen

Von den Komplexen 2, 3 und 4 wurden Röntgenstrukturanalysen durchgeführt.

TABELLE 2. ¹³C-NMR-spektroskopische ^a Charakterisierung der Komplexe 1 und 2

Komplex	$\delta(C_{5}H_{4})$	$\delta(CMe_2)$	δ(W-CH ₃)	δ(Alkin)	δ(W-CO)	$\delta(C_9H_7 \text{ bzw. } C_{13}H_9 \text{ oder } C_{13}H_8)$
1a	97.7, 95.0, 91.3, 90.3 117.4	30.4, 27.5/38.0	- 16.3	192.9, 186.2	240.5	145.9, 145.0, 137.9, 132.6, 127.2, 125.7, 124.6, 121.2, 62.9
1b	95.8, 94.8, 91.5, 91.4 117.9	27.2, 24.5/37.9	- 16.4	192.9, 186.4	240.6	145.9, 144.9, 137.8, 132.6, 127.2, 125.6, 124.7, 121.3, 63.0
1c	98.8, 93.7, 91.6, 90.5 118.2	30.6, 28.8/36.8	n.e.	193.0, 186.1	240.4	146.0, 143.8, 128.4, 125.9, 124.4, 122.4, 37.4
2	92.4, 89.8, 87.9, 78.4 140.4	31.3, 19.3/37.4	-	201.9, 199.2 Ph: 140.5, 137.7, 130.4, 130.1, 129.3 129.0, 128.8, 127.9	235.4	165.3, 152.1, 144.9, 143.4, 138.5, 137.9, 127.5, 126.1, 125.7, 125.4, 119.9, 113.6, 65.0 b

^a In CD₂Cl₂, bei 20°C, rel. δ (CD₂Cl₂) = 53.8 ppm.

^b Zuordnung der Signale erfolgte versuchsweise in Analogie zum Komplex $(C_5H_4CMe_2C_{13}H_8)W(CO)(C_2H_2)$ [3]. n.e. = nicht eindeutig.

Der Komplex 3 wurde erst kürzlich dargestellt [3]; 4 ist schon länger bekannt [5,6] und war von Interesse, weil in dieser Koordinationsverbindung das Acetylen als Zweielektronenligand vorliegt.

3. Ergebnisse und Diskussion

Der Komplex $(\eta^5 - C_5 H_4 CMe_2 C_{13}H_9)W(CO)$ -(HC₂Ph)Me (3) besitzt die in Abb. 1 dargestellte Struktur. Bindungsabstände und -winkel sind in Tab. 3 angegeben.

Die C=C-Achse des Alkinliganden ist im verzerrten Tetraeder des Moleküls **3** fast parallel zur W-CO-Achse ausgerichtet (Winkel 5.7°). Der Phenylsubstituent ist nach außen abgewinkelt und bildet mit der C=C-Achse einen Winkel von $140(2)^\circ$; er nimmt zum CMe₂C₁₃H₉-Substituenten den größtmöglichen Abstand ein. Die Wolfram-Alkin-Kohlenstoffatom-Abstände (W-C(3): 2.04(2) bzw. W-C(4): 2.00(2) Å) sind deutlich kürzer als man dies für eine Wolfram-Kohlenstoff-Einfachbindung erwarten darf. In diesen Bereich fallen W-C_{carben}-Abstände von typischen Fischer'schen Carbenkomplexen [7]. Derartig kurze

W-C-Abstände sind ein wichtiges Kriterium für das Vorliegen alkinischer Vierelektronenliganden, wie z.B. in W(CO)(C_2H_2)(S_2CNEt_2), [8], [WCl₅(HC₂Ph)]PPh₄ [9], $[W_2Cl_8(\tilde{Ph}\tilde{C=C-C=C-SiMe_3})py)_2$ [10], W(CHPh)- $(Cl)_2(C_2Ph_2)(PMe_3)_2$ [11] oder $C_5H_5W(O)(HC_2Ph)_2$ (CH₂COOEt) [12]. Komplexe, in denen das Alkin als Zweielektronenligand fungiert, haben wesentlich größere Metall-Alkin-Kohlenstoff-Abstände. Als Beispiel hierzu kann der zweikernige Molybdän-Fulvalenkomplex $FvMo_2(CO)_3[CO)_3[C_2(COOMe)_2]_2$ (Fv = $C_{10}H_8$) angeführt werden, dessen terminaler Alkinligand Mo-C_{Alkin}-Abstände von 2.337(3) bzw. 2.403(3) Å aufweist [13]. Als weiteres Maß für eine W-C-Einfachbindung eignen sich der Metallacyclopropankomplex $C_{5}H_{5}(CO)_{2}W[(PMe_{2})HC-CH(COMe)]$ (2.206(9) und 2.279(9) Å) [14] und der Olefinkomplex (η^5 -C₅H₅)W-(CO)(ClHC=CHCOMe)NO (2.213(8) und 2.272(8) Å) [15]. Eine sehr gute Vergleichsmöglichkeit für unterschiedliche Metall-Alkinligand-Bindungsabstände bieten die Komplexkationen $[Co(C_2Ph_2)(PMe_3)_3]^+$ und $[Co(C_2Ph_2)(PMe_3)_3(MeCN)]^+$ [16]. Im ersteren Kation fungiert das Alkin als Vierelektronenligand und hat einen um 0.13 Å kürzeren Abstand zum Metall als im zweiten Komplex, in dem es als Zweielektronenligand vorliegt.

Die W-CH₃-Bindung ist mit 2.22(2) Å deutlich kürzer als der W-CH₃-Abstand der Stammverbindung $(\eta^5$ -C₅H₄CMe₂C₁₃H₉)W(CO)₃Me mit 2.31(2) Å [17].

Demgegenüber kann der C=C-Abstand des Alkinliganden (1.30(2) Å) nicht als Unterscheidungsmerkmal

Abb. 1. ORTEP-Darstellung von 3.

für alkinische Zwei- und Vierelektronenliganden herangezogen werden (vgl. [1]).

dadurch, daß der Methylligand durch die Position 1 der substituierten Fluorengruppe ersetzt ist (Abb. 2).

Der Komplex 2 unterscheidet sich von 3 nicht durch das unterschiedliche Alkin, sondern auch vor allem Der entsprechende W-C(12)-Abstand von 2.171(9) Å ist nur unwesentlich kürzer als der W-CH₃-Abstand

TABELLE 3	. Bindungsabstände	(Å)	und	-winkel	(°)	für	3
-----------	--------------------	-----	-----	---------	-----	-----	---

Abstände			
W-C(1)	1.96(2)	W-C(2)	2.22(2)
W-C(3)	2.04(2)	W-C(4)	2.00(2)
W-C(11)	2.44(2)	W-C(12)	2.40(2)
W-C(13)	2.08(2)	W -C(14)	2.23(2)
W-C(15)	2.38(2)	O-C(1)	1.14(2)
C(3)-C(4)	1.30(2)	C(4)-C(5)	2.51(2)
C(5)-C(6)	1.36(3)	C(5)-C(10)	1.39(2)
C(6)-C(7)	1.41(3)	C(7)-C(8)	1.38(3)
C(8)-C(9)	1.34(4)	C(9)-C(10)	1.37(3)
C(11)-C(12)	1.49(2)	C(11)-C(15)	1.38(2)
C(12)-C(13)	1.37(2)	C(13)-C(14)	1.32(2)
C(14)-C(15)	1.44(2)	C(15)-C(16)	1.50(2)
C(16)-C(17)	1.57(2)	C(16)-C(18)	1.52(3)
C(19)-C(31)	1.54(2)	C(20)-C(21)	1.39(2)
C(20)-C(25)	1.41(2)	C(21)–C(22)	1.47(3)
C(22)-C(23)	1.31(3)	C(23)–C(24)	1.31(3)
C(24)-C(25)	1.43(3)	C(25)-C(26)	1.39(2)
C(26)-C(27)	1.41(2)	C(26)-C(31)	1.37(3)
C(27)-C(28)	1.35(3)	C(28)-C(29)	1.34(3)
C(29)-C(30)	1.38(3)	C(30)-C(31)	1.42(3)
Cent ^a -W	1.95		
Winkel			
C(1) - W - C(2)	91.7(7)	C(1) - W - C(3)	72 ()(7)
C(2) - W - C(3)	102.7(8)	C(1) - W - C(4)	109 5(7)
C(2) - W - C(4)	102.0(7)	(3) - W - C(4)	37 5(7)
W = C(1) = O	176(2)	W - C(3) - C(4)	70(1)
W = C(4) = C(3)	73(1)	W - C(4) - C(5)	146(1)
C(3) - C(4) - C(5)	140(2)	C(4) - C(5) - C(6)	124(2)
C(4) - C(5) - C(10)	119(2)	C(6) - C(5) - C(10)	117(2)
C(5) - C(6) - C(7)	121(2)	C(6) - C(7) - C(8)	119(3)
C(7) = C(8) = C(9)	121(2)	C(8) = C(9) = C(10)	120(3)
C(5) - C(10) - C(9)	122(3)	C(12) - C(11) - C(15)	110(2)
C(11) = C(12) = C(13)	101(2)	C(12) - C(13) - C(14)	116(2)
C(13) - C(14) - C(15)	107(2)	$\alpha(11) - \alpha(15) - \alpha(14)$	105(2)
C(11) - C(15) - C(16)	124(1)	$\alpha(14) - \alpha(15) - \alpha(16)$	129(2)
C(15) = C(16) = C(17)	111(1)	$\alpha(15) - \alpha(16) - \alpha(18)$	110(2)
C(17) = C(16) = C(18)	109(2)	C(15) - C(16) - C(19)	109(1)
C(17) - C(16) - C(19)	109(1)	C(18) - C(16) - C(19)	109(1)
C(16) - C(19) - C(20)	114(1)	C(16) - C(19) - C(31)	118(1)
C(20) - C(19) - C(31)	97(2)	C(19) - C(20) - C(21)	129(2)
C(19) - C(20) - C(25)	110(2)	C(21) - C(20) - C(25)	121(2)
C(20) - C(21) - C(22)	116(2)	C(21) - C(22) - C(23)	120(2)
C(22) - C(23) - C(24)	126(2)	C(23) - C(24) - C(25)	118(2)
C(20) - C(25) - C(24)	119(2)	C(20) - C(25) - C(26)	111(2)
C(24) - C(25) - C(26)	129(2)	C(25) - C(26) - C(27)	134(2)
C(25) - C(26) - C(31)	107(2)	C(27) - C(26) - C(31)	119(2)
C(26)-C(27)-C(28)	118(2)	C(27) - C(28) - C(29)	124(2)
C(28) - C(29) - C(30)	120(2)	C(29) - C(30) - C(31)	118(2)
C(19) - C(31) - C(26)	114(2)	C(19) - C(31) - C(30)	125(2)
C(26)-C(31)-C(30)	121(2)	Cent-W-C(1)	119.2
Cent-W-C(2)	106.1	Cent-W-C(3)	148.5
Cent-W-C(4)	121.8	· · · · · · · · · · · · · · · · · · ·	

^a Cent = Zentrum des Cyclopentadienylrings.

Abb. 2. ORTEP-Darstellung von 2.

(2.22(2) Å) von 1. Alle anderen signifikanten Abstände bewegen sich in einem ähnlichen Bereich wie bei 3: Der W-C_{Alkin}-Abstand beträgt 2.01(1) bzw. 2.05(1) Å, der Ph-C=C-Winkel 137(1)°. Die C=C-Achse ist nahezu parallel zur W-CO-Achse (2.2°) orientiert. Der "Brückenkopfwinkel" von 108.4(8)°, der von C(6)-C(7) und C(10) gebildet wird ist trotz des Metallocenophancharakters von 2 nur unwesentlich kleiner als der entsprechende Winkel bei 1 (109(1)°).

Die Struktur von 4 ist in Abb. 3 abgebildet, die Bindungsabstände und -winkel sind in Tab. 5 aufgeführt.

Auch in 4 ist der Acetylenligand so orientiert, daß die C=C-Achse in erster Näherung parallel zur Cr-CO-Gruppe verläuft. Der gefundene Winkel von 11.3° liegt deutlich unter dem berechneten Wert von 20°, der für C₅H₅Mo(CO)(C₂H₂)NO als Konformationsminimum bestimmt wurde [18]. Die Anordnung des C_2H_2 -Liganden bedingt, daß zwischen dem Acetylen-C-Atom C(1) und dem NO-Liganden ein relativ enger Kontakt vorliegt, der seinerseits zu einer Aufweitung der Cr-C(2)-Bindung (2.167(7) Å) führt; der andere Cr-C_{Alkin}-Abstand beträgt 2.107(7) Å. Diese Metall-Alkinkohlenstoffatom-Abstände sind deutlich größer als die in den Komplexen 1 und 2, weil in 3 das Alkin als Zweielektronenligand vorliegt. Einen Vergleich mit einem alkinischen Vierelektronenligand bietet der Komplex Cr(CO)₂[P(OMe)₃]₂(C₂Ph₂) [19] mit einem Cr-Alkin-Abstand von 1.959(6) bzw. 1.958(5) Å und einem Ph-C=C-Winkel von 135.0(5)° bzw. 136.0(5)°. Der Abstand der beiden Alkin-C-Atome in 4 beträgt 1.214(10) Å und ist nur geringfügig größer als der entsprechende Abstand im freien C_2H_2 (1.20 Å).

In 4 ist der NO-Ligand signifikant enger an das Chrom gebunden als der CO-Ligand (1.675(5) bzw. 1.870(7) Å). Analoge Bindungsverhältnisse wurden auch am Fluorenylkomplex (η^5 -C₁₃H₉)Cr(CO)₂NO beobachtet (Cr-N: 1.687(7) und Cr-C: 1.864(6) Å [20]).

4. Experimentelles

Die allgemeine Darstellung von Alkinkomplexen des Typs $(\eta^5 - C_5 H_4 CMe_2 C_{13} H_8)M(CO)(alkin)Me$ (M = Mo, W) bzw. $(\eta^5 - C_5 H_4 CMe_2 - \eta^1 - C_{13} H_7)M(CO)(alkin)$ wurde erst kürzlich beschrieben [3]; Komplex 4 ist schon länger bekannt [5,6].

5. Röntgenkristallographie

In Tab. 6 sind für die Komplexe 2-4 die Kristalldaten sowie Angaben zu den Intensitätsmessungen und zu den Strukturverfeinerungen zusammengefaßt.

Die Röntgenmessungen erfolgten mit Mo-K α -Strahlung (λ 0.71073 Å für 2 und 3; λ 0.71069 Å für 4) bei 18°C auf einem Enraf-Nonius CAD-4 Diffraktometer (1 und 2) bzw. einem Philips PW-1100 Einkristalldiffraktometer (4) mit Graphitmonochromator. Intensitätsdaten: $\theta/2\theta$ Meßbetrieb; $2 < 2\theta < 50^\circ$. Lösung der Struktur: SHELXS [22] für 1 und 2 bzw. Patterson-Methode für 3. Für 1 und 2 wurden die Positionen der Wasserstoffatome in berechneten Lagen, 0.95 Å vom

214

TABELLE 4. Bindungsabstände (Å) und -winkel (°) für 2

Abstände			
W-C(1)	1.97(1)	W -C(2)	2.38(1)
W-C(3)	2.26(1)	W -C(4)	2.28(1)
W-C(5)	2.37(1)	W-C(6)	2.47(1)
W-C(12)	2.171(9)	W-C(23)	2.01(1)
W-C(24)	2.05(1)	O-C(1)	1.14(1)
C(2)-C(3)	1.39(1)	C(2)-C(6)	1.45(1)
C(3)-C(4)	1.41(2)	C(4)-C(5)	1.42(2)
C(5) - C(6)	1.35(2)	C(6) - C(7)	1.53(1)
C(7) - C(8)	1.55(2)	C(7)-C(9)	1.50(1)
C(7) - C(10)	1.56(1)	C(10) - C(11)	1.51(1)
C(10) - C(22)	1.52(1)	C(11) - C(12)	1.41(1)
C(11)-C(16)	1.41(1)	C(12)-C(13)	1.38(1)
C(13) - C(14)	1.41(1)	C(14) - C(15)	1.39(2)
C(15) - C(16)	1.35(2)	C(16) - C(17)	1.49(2)
C(17) - C(18)	1.38(1)	C(17) - C(22)	1.39(1)
C(18) - C(19)	1.37(2)	C(19) - C(20)	1.34(2)
C(20) - C(21)	1.43(2)	C(21) - C(22)	1.40(1)
C(23) - C(24)	1.32(2)	C(23) - C(25)	1 45(1)
C(24) - C(31)	1 48(2)	C(25) - C(26)	1.40(2)
C(25) - C(30)	1.37(1)	C(26) - C(27)	1 39(1)
C(27) - C(28)	1 37(2)	C(28) - C(29)	1.37(2)
C(29) = C(30)	1 38(1)	C(31) - C(32)	1 39(1)
C(31) = C(36)	1 38(2)	C(32) = C(33)	1.39(1)
C(33) - C(34)	1 38(2)	C(34) = C(35)	1 39(2)
C(35) = C(36)	1 39(2)	Cent-W	2 02
	1.07(2)		2.02
Winkel			
C(1) - W - C(12)	90.08(4)	C(1)-W-C(23)	114.7(5)
C(12)-W-C(23)	98.1(4)	C(1)-W-C(24)	76.8(5)
C(12)-W-C(24)	99.7(4)	C(23)-W-C(24)	38.0(4)
W-C(1) -O	178(1)	C(3)-C(2)-C(6)	107(1)
C(2)-C(3)-C(4)	110(1)	C(3)-C(4)-C(5)	105(1)
C(4)-C(5)-C(6)	111(1)	C(2)-C(6)-C(5)	107(1)
C(2)-C(6)-C(7)	124(1)	C(5)-C(6)-C(7)	129(1)
C(6)-C(7)-C(8)	105.2(9)	C(6)-C(7)-C(9)	111.5(9)
C(8)-C(7)-C(9)	109(1)	C(6)-C(7)-C(10)	108.4(8)
C(8) - C(7) - C(10)	110.4(9)	C(9)-C(7)-C(10)	111.8(9)
C(7)-C(10)-C(11)	109.7(8)	C(7)-C(10)-C(22)	116.7(9)
C(11)-C(10)-C(22)	102.3(8)	C(10)-C(11)-C(12)	127.5(8)
C(10)-C(11)-C(16)	111(1)	C(12)-C(11)-C(16)	122(1)
W-C(12)-C(11)	126.4(7)	W-C(12)-C(13)	120.0(7)
C(11)-C(12)-C(13)	113.7(8)	C(12)-C(13)-C(14)	125(1)
C(13)-C(14)-C(15)	119(1)	C(14)-C(15)-C(16)	117.3(9)
C(11)-C(16)-C(15)	123(1)	C(11)-C(16)-C(17)	107(1)
C(15)-C(16)-C(17)	129.6(9)	C(16) - C(17) - C(18)	130(1)
C(16)-C(17)-C(22)	108.9(9)	C(18) - C(17) - C(22)	121(1)
C(17) - C(18) - C(19)	119(1)	C(18)-C(19)-C(20)	122(1)
C(19)-C(20)-C(21)	120(1)	C(20)-C(21)-C(220)	118(1)
C(10)-C(22)-C(17)	110.5(9)	C(10)-C(22)-C(21)	130(1)
C(17)-C(22)-C(21)	119(1)	W-C(23)-C(24)	72.4(6)
W-C(23)-C(25)	151.1(8)	C(24)-C(23)-C(25)	137(1)
W-C(24)-C(23)	69.6(7)	W-C(24)-C(31)	151.2(8)
C(23)-C(24)-C(31)	137(1)	C(23)-C(25)-C(26)	117.7(9)
C(23) - C(25) - C(30)	122.2(9)	C(26)-C(25)-C(30)	120(1)
C(25)-C(26)-C(27)	119(1)	C(26)-C(27)-C(28)	121(1)
C(27)-C(28)-C(29)	120(1)	C(28)-C(29)-C(30)	121(1)
C(25)-C(30)-C(29)	120(1)	C(24)-C(31)-C(32)	122(1)
C(24) - C(31) - C(36)	118(1)	C(32)-C(31)-C(36)	120(1)
(31)-C(32)-C(33)	119(1)	C(32)-C(33)-C(34)	122(1)
C(33) - C(34) - C(35)	119(1)	C(34)-C(35)-C(36)	119(1)
C(31)-C(36)-C(35)	121(1)	Cent-W-C(1)	115.6
Cent-W-C(12)	108.1	Cent-W-C(23)	122.0
Cent-W-C(24)	148.9		

^a Cent = Zentrum des Cyclopentadienylrings.

ı.

Abb. 3. ORTEP-Darstellung von 4.

gebundenen C-Atom angenommen $(B 5.5 \text{ Å}^2)$. Das Alkin-Wasserstoffatom von 1 wurde in die Verfeinerung nicht einbezogen. Die Verfeinerung der Nichtwasserstoffatome mit anisotropen Temperaturfaktoren (mit Ausnahme von C(1) und C(13)) lieferte die endgültigen Werte für R und R_w (siehe Tab. 6). Bei den Rechnungen zu 3 benutztes Programmsystem: SHELX76 [21]. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen,

TABELLE 5. Bindungsabstände (Å) und -winkel (°) für 4					
Abstände			<u> </u>		
Cr-C1	2.107(7)	Cr-Z	1.864		
Cr-C2	2.167(7)	C1-C2	1.214(10)		
Cr-C3	1.870(7)	C3-O3	1.121(8)		
Cr-N4	1.675(5)	N4-O4	1.196(7)		
Cr-C11	2.225(7)	C11-C12	1.424(12)		
Cr-C12	2.235(8)	C12-C13	1.369(13)		
Cr-C13	2.192(8)	C13-C14	1.382(13)		
Cr-C14	2.181(8)	C14-C15	1.359		
Cr-C15	2.208(8)	C15-C11	1.431(13)		
Winkel					
Z-Cr-C1	114.5	Cr-C1-C2	76.3(5)		
Z-Cr-C2	129.4	Cr-C2-C1	70.8(4)		
Z-Cr-C3	117.2	Cr-C3-O3	176.9(7)		
Z-Cr-N4	123.3	Cr-N4-O4	172.0(5)		
C1-Cr-C2	33.0(3)	C15-C11-C12	107.0(7)		
C1-Cr-C3	108.1(3)	C11-C12-C13	107.7(7)		
C1-Cr-N4	96.9(3)	C12-C13-C14	108.1(8)		
C2-Cr-C3	75.3(3)	C13-C14-C15	111.0(8)		
C2-Cr-N4	102.9(3)	C14-C15-C11	106.2(8)		
C3-Cr-N4	93.4(3)				

unter Angabe der Hinterlegungsnummern CSD-57503, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung und dem US National Sci-

TABELLE 6. Kristalldaten und Zusammenfassung der Intensitätsmessungen und der Strukturverfeinerung

	C ₃₁ H ₂₈ OW (2)	C ₃₆ H ₂₈ OW (3)	$C_8H_7NO_2Cr$ (4)
Farbe des Kristalls	rot	rot	gelb
Molmasse	600.42	660.47	201.14
Raumgruppe	$P2_1/c$	$Pn2_1a$	P212121
Zelikonstanten	-	-	
a (Å)	11.097(2)	18.858(9)	10.166(3)
b (Å)	22.211(4)	13.263(8)	12.516(3)
c (Å)	10.527(9)	10.878(5)	6.664(2)
Zellvolumen (Å ³)	2474.3	2720.7	847.9
Moleküle pro Elementarzelle	4	4	4
$D_{\rm her} (\rm g cm^{-3})$	1.61	_	1.576
$\mu_{\rm ber}$ (cm ⁻¹)	49.6	_	12.3
Max. Kristallabmessungen (mm)	0.13 imes 0.15 imes 0.28	$0.28 \times 0.35 \times 0.45$	0.22 imes 0.26 imes 0.38
Gemessene Reflexe	2742	2723	900
Bereich von h, k, l	$\pm 13, -26, +12$	+22, +15, +12	+12, +14, +7
Beobachtete Reflexe	$2136 \left[F_{0} \geq 5\sigma(F_{0}) \right]$	$2067 \left[F_{\alpha} \geq 5\sigma(F_{\alpha}) \right]$	879
Anzahl der variierten Parameter	297	348	109
$R = \sum F_{\alpha} - F_{\alpha} / \sum F_{\alpha} $	0.056	0.029	0.055
R _w	0.068	0.036	0.057
Maximum d. Restelektronen-Dichte $(e^{-}/Å^{3})$	0.3		0.5

ence Foundation Chemical Instrumentation Program für die Beschaffung des Diffraktometers (R.D.R.).

- 10 M. Kerstin, K. Dehnicke und D. Fenske, J. Organomet. Chem., 309 (1986) 125.
- 11 A. Mayr, K.S. Lee, M.A. Kjelsberg und D. van Engen, J. Am. Chem. Soc., 108 (1986) 6079.
- 12 E.R. Burkhardt, J.J. Doney, R.G. Bergman und C.H. Heathcock, J. Am. Chem. Soc., 109 (1987) 2022.
- 13 J.S. Drage und K.P.C. Vollhardt, Organometallics, 5 (1986) 280.
- 14 H.G. Alt und U. Thewalt, J. Organomet. Chem., 268 (1984) 235.
- 15 H.G. Alt, H.I. Hayen, H.-P. Klein und U. Thewalt, Angew. Chem., 96 (1984) 811; Angew. Chem., Int. Ed. Engl., 23 (1984) 803.
- 16 B. Capelle, A.L. Bcauchamp, M. Dartiguenave und Y. Dartiguenave, J. Chem. Soc., Chem. Commun., (1982) 566; B. Capelle, A.L. Beauchamp, M. Dartiguenave und Y. Dartiguenave, J. Am. Chem. Soc., 105 (1983) 4662.
- 17 H.G. Alt, J.S. Han und R.D. Rogers. J. Organomet. Chem., eingereicht.
- 18 B.E.R. Schilling, R. Hoffmann und J.W. Faller, J. Am. Chem. Soc., 101 (1979) 592.
- 19 D.J. Wink und B.T. Creagan, J. Am. Chem. Soc., 112 (1990) 8585.
- 20 J.L. Atwood, R. Shakir, Y.T. Malito, M. Herberhold, W. Kremnitz, W.P.E. Bernhagen und H.G. Alt, J. Organomet. Chem., 165 (1979) 65.
- 21 G.M. Sheldrick, *sHELX-76-Programmsystem*, Göttingen, unveröffentlicht.
- 22 G.M. Sheldrick, SHELXS, Acta Crystallogr., Sect. A, 46 (1990) 467.

- 1 J.L. Templeton, Adv. Organomet. Chem., 29 (1989) 1 und darin enthaltene Zitate.
- 2 M. Green, J. Organomet. Chem., 300 (1986) 93.
- 3 H.G. Alt, J.S. Han und H.E. Maisel, J. Organomet. Chem., 409 (1991) 197.
- 4 H.G. Alt, J. Organomet. Chem., 127 (1977) 349; H.G. Alt, J. Organomet. Chem., 288 (1985) 149.
- 5 M. Herberhold und H.G. Alt, J. Organomet. Chem., 42 (1972) 407.
- 6 M. Herberhold, H.G. Alt und C.G. Kreiter, J. Organomet. Chem., 42 (1972) 413; M. Herberhold, H.G. Alt und C.G. Kreiter, Liebigs Ann. Chem., (1976) 300.
- 7 K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert und K. Weiss: *Transition Metal Carbene Complexes*, Verlag Chemie, Weinheim, 1983, S. 103.
- 8 L. Ricard, R. Weiss, W.E. Newton, G.J.-J. Chen und J.W. McDonald, J. Am. Chem. Soc., 100 (1978) 1318.
- 9 M. Kerstin, K. Dehnicke und D. Fenske, J. Organomet. Chem., 346 (1988) 201.